Parameter-estimation-based learning for feedforward neural networks: convergence and robustness analysis
نویسندگان
چکیده
منابع مشابه
Optimized Learning with Bounded Error for Feedforward Neural Networks
A learning algorithm for feedforward neural networks is presented that is based on a parameter estimation approach. The algorithm is particularly well-suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its convergence and robustness properties is made. Simulation results confirm the effectiveness of the algorithm and its adva...
متن کاملOptimization-based learning with bounded error for feedforward neural networks
An optimization-based learning algorithm for feedforward neural networks is presented, in which the network weights are determined by minimizing a sliding-window cost. The algorithm is particularly well suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its convergence and robustness properties is made. Simulation results con...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملNew Learning Automata Based Algorithms for Adaptation of Backpropagation Algorithm Parameters
One popular learning algorithm for feedforward neural networks is the backpropagation (BP) algorithm which includes parameters, learning rate (eta), momentum factor (alpha) and steepness parameter (lambda). The appropriate selections of these parameters have large effects on the convergence of the algorithm. Many techniques that adaptively adjust these parameters have been developed to increase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998