Parameter-estimation-based learning for feedforward neural networks: convergence and robustness analysis

نویسندگان

  • Angelo Alessandri
  • Manfredi Maggiore
  • Marcello Sanguineti
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Learning with Bounded Error for Feedforward Neural Networks

A learning algorithm for feedforward neural networks is presented that is based on a parameter estimation approach. The algorithm is particularly well-suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its convergence and robustness properties is made. Simulation results confirm the effectiveness of the algorithm and its adva...

متن کامل

Optimization-based learning with bounded error for feedforward neural networks

An optimization-based learning algorithm for feedforward neural networks is presented, in which the network weights are determined by minimizing a sliding-window cost. The algorithm is particularly well suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its convergence and robustness properties is made. Simulation results con...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

New Learning Automata Based Algorithms for Adaptation of Backpropagation Algorithm Parameters

One popular learning algorithm for feedforward neural networks is the backpropagation (BP) algorithm which includes parameters, learning rate (eta), momentum factor (alpha) and steepness parameter (lambda). The appropriate selections of these parameters have large effects on the convergence of the algorithm. Many techniques that adaptively adjust these parameters have been developed to increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998